Exploring spatial decay effect in mass media and social media: a case study of China

Yihong Yuan
Department of Geography, Texas State University, San Marcos, TX, USA, 78666.
Tel: +1(512)-245-3208
Email:yuan@txtate.edu

1. Introduction

The rapid development of techniques and theories in the big data era have also introduced new challenges and opportunities to analyze a large amount of mass media data available online (Eagle et al. 2009, Liben-Nowell et al. 2005). Compared to social media, traditional mass media is characterized by the significance and aggregated nature of associated events (Liebert and Schwartzberg 1977). Special event data, including both positive events (e.g., holiday festivals) and negative events (e.g., street riots) have played an important role in analyzing the social, economic, and cultural status of a region. As such, mass media data are often suitable for investigating the aggregated pattern of a society.

In addition, the spatial decay effect has been a hot topic in many research fields such as immigration and transportation (e.g., the decay of traffic flows between locations) (Rodrique et al. 2013). Researchers have employed different models to investigate how distance decay influences the magnitude of interactions between geographic units. Among all potential models, the gravity model is commonly-used due to its effectiveness in predicting the degree of interaction, simplicity of equation, and its ability to deal with flows in both directions (Hardy et al. 2012).

In this research, the open-source dataset “The Global Data on Events, Location and Tone” (GDELT) is employed to analyze the connections between Chinese provinces in mass media. The fields of communication, history, and political science, among others, have widely explored GDELT’s continuous compilation of print, broadcast, and web news media events (Leetaru and Schrodt 2013, Yonamine 2013), but the spatial element of the data has not been investigated sufficiently. This paper aims to compare the magnitude of spatial decay effect in the GDELT data and a dataset from the Chinese social media website Weibo1 based on the gravity model. We focus on demonstrating the effectiveness of utilizing both mass media and social media data to reveal geographic patterns, which can be considered as a data preprocessing strategy for pattern recognition and outlier identification in multiple areas such as urban planning, sociology and political geography. Our results also provide valuable input for policy makers to interpret the dynamic nature of inter-region relations in different datasets.

2. Dataset

(1) Main dataset: GDELT

1 www.weibo.com
This research utilizes an open dataset named GDELT. This CAMEO-coded dataset\(^2\) (Schrodt 2012) is updated daily and consists of over a quarter-billion news event records dating back to 1979. It captures what has happened/is happening worldwide, which can be utilized as a valuable resource for modeling societal-scale behavior and beliefs across all countries of the world (Leetaru and Schrodt 2013). The data include multiple columns such as the source, actors, time, and approximated location of recorded events. For consistency we use the data from 01/2014 to 05/2014 in this analysis.

For instance, in a news report entitled “An artist in Shanghai sold his painted box room to the Sifang Art Museum in Nanjing”. The associated geographic locations of Actor 1, Actor 2 and the actual action is demonstrated in Table 1. Here we only consider the records when the two actors are explicitly identified and geo-tagged in China.

<table>
<thead>
<tr>
<th>Event Date</th>
<th>Actor 1_Geo</th>
<th>Actor 2_Geo</th>
<th>Action_Geo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-01-28</td>
<td>Shanghai, China</td>
<td>Nanjing, Jiangsu, China</td>
<td>Shanghai, China</td>
</tr>
</tbody>
</table>

(2) Complementary datasets.

Besides the main dataset GDELT, we also utilize a complementary dataset to compare the spatial decay effects mass media and social media data. This dataset covers 3 million users in the Chinese social networking site Weibo\(^4\). The records were sampled between 05/01/2014 to 05/20/2014. Each record captures the geographic coordinates (e.g., volunteered geographic information from built-in GPS module of smart phones), date, time, user ID, and etc. The detailed steps of model construction will be illustrated in Sections 3.

3. Methodology and preliminary results

As discussed in Section 2, this research concentrates on comparing the spatial decay effect in mass media and social media for Chinese provinces. The analyses will be conducted from the following two steps:

- **Data preprocessing**
 Due to the large volume of the data records and coded fields in GDELT, it is necessary to preprocess the dataset and select essential information before analysis. First we calculate the frequencies of “co-occurrence” between each pair of Chinese provinces in GDELT. The frequencies are noted as \(F(i, j)\), which stands for the frequency that provinces \(I\) and \(J\) appear as the two actors’ locations in the same news record. We also processed the Weibo data to identify the Chinese province associated with each geo-tagged post.

- **Model construction**
 As illustrated in Section 1, the gravity model is utilized in this research to examine the distance decay effect:

\(^2\) CAMEO - Conflict and Mediation Event Observations (CAMEO) is a framework for coding event data

\(^3\) Due to page limit, only fields related to this research are displayed

\(^4\) www.weibo.com
where P_i and P_j are the “conceptual sizes” (relative importance) of two provinces i and j in a certain topic, D_{ij} represents the distance between them, and I_{ij} denotes the interaction/connection between i and j. Here we construct two gravity models to compare the best fit of distance friction coefficient β to investigate the role of distance decay in the two datasets (GDELT and Weibo). The specific parameters are defined as follows:

GDELT: I_{ij} The frequency of “co-occurrence” of i and j in news records.
- P_i: The total occurrence of i in news records.
- P_j: The total occurrence of j in news records.

Weibo: I_{ij} The number of unique users who have physically appeared in both i and j.
- P_i: The number of unique users who have physically appeared in i.
- P_j: The number of unique users who have physically appeared in j.

Based on the above definitions, we calculate the best fit of coefficient β by evaluating the Pearson correlation (R^2) between fitted and observed I_{ij}. The β value that achieves the highest R^2 is considered as the best fit. Since R^2 is scale-free, the constant K does not affect our models. As illustrated in previous studies in human mobility, transportation and regionalization (Gonzalez et al. 2008, Liu et al. 2014), higher β value indicates a stronger distance decay effect. Figure 1 and Figure 2 indicates the correlation between the fit β values and the goodness of fit (R^2) of both datasets.

![Figure 1. Fitted β values and the goodness of fit (R^2).](image-url)
As can be seen, the two datasets demonstrate distinct patterns for distance decay effect. For GDELT dataset the distance decay effect is weaker ($\beta=0.121, R^2=0.7127$), whereas the Weibo data shows the strongest distance decay effect ($\beta=1.05, R^2=0.8336$). Compared to the β values obtained by several related studies: 0.2 for Chinese province name co-occurrences on web pages (Liu et al. 2014), 1.59 for bank note trajectories (Brockmann and Theis 2008) and 1.75 for individual mobility patterns by mobile phone data (Gonzalez et al. 2008), our study further confirms that for Chinese provinces the volunteered geographic information in social networking sites experiences a stronger distance decay than mass media data.

4. Conclusion

The development of Information and Communication Technologies has introduced exciting changes in various research fields in the age of instant access. This paper employed the GDELT and Weibo data to examine the connection between Chinese provinces. The contributions of this research include:

- We compared the spatial decay effects in two types of datasets (mass media and social media) for inter-region patterns. The fit β values demonstrate that mass media data indicate a weaker distance decay effect than social media (Weibo data) in for Chinese provinces.
- We demonstrated the effectiveness of applying GDELT and big data techniques to investigate informative patterns for interdisciplinary researchers. One potential explanation for the low β value in GDELT data is due to the fact that China is a developing country with a strong central government; hence, the capital Beijing has a significant impact on all other provinces regardless of the distance between them. However, this research does not aim to provide in-depth interpretation of the causes and consequences of these findings from a political perspective; instead, it proposed a method to discover the patterns that can provide insights in different research fields.

Future research directions include extending this method to other countries and regions to test its robustness. GDELT provides a rich data source to analyze international relations at various spatial scales, such as investigating the connections between different countries.
Future studies can also look into the correlation between connection strength and various demographic variables such as population and economic status.

References

Yonamine, J. E. 2013. Predicting future levels of violence in Afghanistan district using GDELT. UT Dallas.